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Abstract: Aortic metabolism is a merge of complex processes. Atherosclerotic infiltration of the aortic wall is a crucial factor 

when choosing an appropriate endovascular treatment modality for anatomically suitable patients. Due to the rise of 

endovascular treatments and placement of endovascular devices in younger patients, many physicians are starting to take a more 

considerable interest in this complex process. Many experimental animal models are used for elucidation of individual aspects in 

this area. This led to an in-depth explanation of many metabolic processes of the aortic wall. However, only a few papers are 

reporting on the assessment of these pathological processes in human tissues. This paper outlines some of the crucial aspects of 

the thoracoabdominal aortic metabolism. Final results of endovascular treatments are believed to be significantly affected by the 

quality of the aortic wall and the ability to predict its further changes. This includes the pathological changes and their effects on 

the symbiotic metabolic changes. “Patient-tailored” endovascular aortic treatments based on the aortic metabolic assessment 

may be able to optimise the cases outcomes. Due to the rise of endovascular treatments and placement of endovascular devices in 

younger patients, further research is needed to understand better aortic metabolic processes in various patient groups, including 

groups of patients suffering from chronic metabolic diseases. Aortic wall metabolism should be assessed with the aim to optimise 

the endovascular treatment outcomes. 
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1. Introduction and History 

Atherosclerotic infiltrations of the aorta are a key factor 

when choosing an appropriate endovascular treatment 

modality in anatomically suitable patients [1]. The difference 

in metabolisms of the thoracic and abdominal aorta are 

becoming more significant due to the present trends towards 

the use of extensive endovascular treatments vs surgical repair 

[2]. 

The predisposition to atherosclerotic infiltration of the 

abdominal aorta and the thoracic aorta had been observed and 

compared by pathologists since 1947 [3]. The difference was 

attributed to the different metabolism of arterial tissue. 

Lazovskaya et al. wrote the very first paper dealing with the 

metabolism of vessels. In early 1943 [4]. Other early papers 

such as Briggs et al. “The metabolism of arterial tissue'' 

published in 1949 and Henderson et al. ‘’The respiration of 

arterial tissue’’ suggested that arterial tissue might have a 

specific metabolism when compared to the other tissues in the 

human body [5-6]. The major observed difference was a 

greater consumption of oxygen by the abdominal and thoracic 

aorta when compared to other vessels. This was 

experimentally demonstrated using a rat model in the late 

1940’s [3-4]. Although abdominal and thoracic aorta oxygen 

consumptions were similar, abdominal aorta had shown lower 

metabolic activity compared to the thoracic segment [5-6]. 
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Early papers also documented that atherosclerosis in 

humans develops in anatomically specific regions [7-9]. In 

1970 Dayton S. et al. published data on the fact that most of 

the cholesterol in atherosclerotic plaques in aortas is acquired 

from plasma lipoproteins. Furthermore, it was suggested that 

arterial lipoproteins play an essential role in atherosclerosis 

[10]. 

2. Clinical Science & Pathology 

2.1. Low-Density-Cholesterol 

The association of low-density-cholesterol (LDL) with 

arterial extracellular matrix increases both aortic 

concentrations of ungraded LDL and increased LDL retention 

within the atherosclerotic lesions [11]. Studies by Schwenke D. 

C. et al. and Tozer E. C. et al. using a rat model demonstrated 

that aortic LDL retention did not differ between the branch and 

uniform abdominal aorta [12-13]. However, none of these 

studies considered the aspect that LDL might be metabolically 

sequestered in the atherosclerotic free aorta. In another study, 

Schwenke D. C. demonstrated the metabolic evidence of LDL 

being sequestered in a form that does not readily undergo 

cellular degradation in the abdominal aorta [14]. Furthermore, 

it was shown that LDL is steadily exchanged with plasma LDL 

[14]. These studies had also described an association between 

LDL with extracellular arterial matrix and increased 

metabolism of LDL by macrophages. Furthermore, prolonged 

intra-arterial LDL retention can promote intra-arterial 

oxidation of LDL leading to the build-up of cholesterol in 

arteries [15]. 

2.2. 18F-Fluorodeoxyglucose 

The 18F-fluorodeoxyglucose (
18

FDG) is one of the most 

frequently used tracer in clinical practice.
 18

FDG is taken up 

into the cell by endothelial glucose transport. Afterwards, it is 

converted to 
18

FDG -6-phosphate. Unlike glucose, which is 

metabolised further, the phosphorylated 
18

FDG -6-phosphate 

cannot undergo further metabolism and is therefore trapped in 

the cell. Increased cellular uptake of 
18

FDG and a higher rate 

of intracellular phosphorylation are the underlying signs for 

the cells with higher metabolism [16]. 

A clinical trial by Kotze CW et al. had demonstrated a 

significant increase of 
18

FDG uptake in an aortic aneurysm 

wall in a majority of tested patients. This may advocate that 

increase in 
18

FDG uptake directly reflects the increased 

metabolic rate of the aortic wall. This can be caused by 

chronic inflammatory processes, aortic dilatation, or 

atherosclerosis [17]. This increase in an aortic tissue 

metabolism plays undoubtedly major role in further 

dilatation and the development of aortic aneurysms [18]. On 

the other hand, Morel O. et al. proved that patients with small 

aortic aneurysms do not exhibit growth show by low levels 

of 
18

FDG uptake due to small numbers of cells present in the 

aortic wall [19]. Furthermore, low levels of 
18

FDG also 

represent the metabolic activity of cells in the aneurysm wall. 

These cells include not only inflammatory cells but also 

smooth muscle cells [20]. An interesting finding by Kotze et 

al. also documented even levels of 
18

FDG found in 

aneurysms that were in a state just before maximising their 

diameter. Despite 
18

FDG metabolism predicting capabilities, 

its clinical use is not widespread because the aortic wall 

covered by thrombus will be influenced by in-blood 

circulating 
18

FDG very scarcely [16]. It should be kept in 

mind that thrombus covering the wall of aorta is also 

metabolically active and is affecting the metabolism of aorta 

by its physical presence and metabolism [21]. Cyclic 

changes in 
18

FDG uptake reflect cyclic inflammatory 

processes of atherosclerosis and the transient nature of 
18

FDG uptake in atherosclerotic lesions [22-13]. No 

correlation between calcification and increased metabolism 

of an aortic wall was found as shown by Tatsumi M. et al. 

[23]. They documented that FDG uptake sites are 

well-defined and distinct from calcifications. The uptake 

sites were most likely positioned in metabolically active 

atherosclerotic areas [24]. 

2.3. Renin-Angiotensin System 

The renin-angiotensin system (RAS) is treated as a 

circulatory hormonal system that regulates electrolyte balance, 

blood pressure, blood flow, and fluid volume [25]. Recent 

findings had shown that RAS is activated locally in the heart, 

the vessel wall, the kidney, and the brain [26-28]. 

Vascular inflammation is involved in the initiation and 

progression of atherosclerosis. RAS plays a critical role in the 

regulation of vessel wall homeostasis as an anti-inflammatory 

agent [29-30]. Campbell et al. used an experimental model in 

1986 for establishing quantitative data regarding the aortic 

wall angiotensin activity [26]. Campbell and his team showed 

that the aortic wall has roughly 70% lower levels of 

angiotensin when compared to liver [31]. 

Another aspect of RAS function regarding the aortic 

metabolism is activation of mesenchymal cells in the tunica 

media and adventitia. This results in their fibrinogenic 

remodelation [32]. Experimental work by Bujak-Gizycka et al. 

identified a new metabolite of angiotensinogen using a rat 

model [28]. By applying liquid chromatography-mass 

spectrometry method (LC-MS), they detected significant 

amounts of pro-angiotensin-12 (proAng-12), the primary 

product of angiotensinogen metabolism in rat aortic tissue 

[33]. This contradicts findings by Nagata S. et al. who studied 

the aorta using radioimmunoassay [34]. The difference in 

findings was mostly attributed to the short half-life time of 

proAng-12. They had also shown data showing the proAng-12 

playing a crucial role as a substrate for generating 

angiotensin-1 and subsequently angiotensin-2. This is 

important for a quick release of these substances that are used 

in the instant production of RAS components. This process 

circumvents slower cellular production of these precursors [21, 

35]. Despite all of these data, the enzyme for proAng-12 

production had not been found yet [20]. Wolkow P. P. et al. 

investigated exogenous angiotensin-1 role in the metabolism 

of the aorta in diabetic rats [36]. The obtained data indicate 

that aortic concentration of angiotensin- 2 is not modified by 
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diabetes. Additionally, the effect of angiotensin-2 on the 

contractility of the aorta in diabetes is also uncertain. Despite 

that, some authors, i.e. Head J. R. et al. suggest that 

contractility of the aorta does not change with diabetes [37]. 

The conflicting findings can probably be attributed to the use 

of different and evolving experimental techniques and 

different experimental design used by the two research groups 

[31-32]. 

3. Clinical Perspective 

Aortic stent grafts had become a safe and effective 

treatment modality in the treatment of various aortic diseases 

[38-39]. No comparison study had been performed up-to-date 

to demonstrate what is the optimal stent graft for treating 

aortic disease. Several devices have undergone FDA trials but 

had never made it to the emerging market for various technical 

or structural failures: the Edwards Lifepath 

balloon-expandable modular bifurcated stent graft suffered 

from stent fractures of the main body, the Trivascular Enovus 

device was deliverable through a small-diameter sheath 

[40-41]. 

Despite the widespread of aortic stent grafts use, there is 

almost no evidence documenting the effects of aortic 

metabolism; hence the progression of atherosclerosis or 

inflammatory processes of the aortic wall on the intermediate 

and long-term results of these devices. One may speculate that 

the progression of atherosclerotic disease or other 

inflammatory processes can in the future affect the once 

“suitable” proximal and distal landing zone, compromising 

the stent graft seal, thus increasing the chance of device failure 

and endoleak formation. Furthermore, future stent graft 

dislocation or migration can be affected by these metabolic 

processes. 

In the future clinical studies examining the stent graft 

behavior over time have to be performed to understand and 

find an optimal device that can deal with changes occurring in 

the aortic wall with time. 

4. Conclusion 

Aortic metabolism is a merge of complex processes. Many 

physicians are starting to take a more considerable interest in 

this complex process as there are ever more endovascular 

treatment modalities available for patients today. Long term 

results of these endovascular treatments are believed to be 

greatly affected by the quality of the aortic wall and our ability 

to predict its further changes. Thoracoabdominal aortic 

metabolic assessment influence the endovascular device 

selection for patients, thus prolonging and affecting 

endovascular devices long-term outcomes. Therefore, due to 

the rise of endovascular treatments and placement of 

endovascular devices in younger patients, further research is 

needed to understand better aortic metabolic processes in 

various patient groups, including groups of patients suffering 

from chronic metabolic diseases. 
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